Small Business Innovation Research/Small Business Tech Transfer

High Performance Lithium Sulfur Battery with Novel Separator Membrane for Space Applications, Phase I

Completed Technology Project (2014 - 2014)

Project Introduction

For NASA's human and robotic mission, the battery with extremely high specific energy (>500 Wh/kg) and long cycle life are urgently sought after in order to reduce the payload weight. Current state-of-the-art lithium ion batteries, such as graphite/LiCoO2 or graphite/LiFePO4 systems, have limited specific energy to around 220 Wh/kg on the cell level. In order to meet the future NASA mission requirements, new out-of-box battery chemistries and components need to be developed. On the commercial side, electric vehicles (EVs) seem to be promising alternatives to replace the internal combustion engines, which can reduce the consumption of petroleum oil and CO2 emission. However, up to date, the lack of suitable batteries with high energy density and excessive cost of the power sources have hindered the development and widespread market penetration of the EVs. Driven by the strong market pull, Bettergy has invented a novel ion selective membrane that can be employed along with Li2S based cathode material to develop the next generation lithium sulfur battery. This novel battery is expected to have 1) high specific energy (>500 Wh/kg); 2) long cycle life (> 1000 cycles); 3) long storage life and 4) great safety feature, which can meet the challenge requirements of the NASA mission.

Primary U.S. Work Locations and Key Partners

High Performance Lithium Sulfur Battery with Novel Separator Membrane for Space Applications, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

High Performance Lithium Sulfur Battery with Novel Separator Membrane for Space Applications, Phase I

Completed Technology Project (2014 - 2014)

Organizations Performing Work	Role	Туре	Location
Bettergy Corporation	Lead Organization	Industry	Peekskill, New York
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
New York	Ohio

Project Transitions

0

June 2014: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137763)

Images

Briefing Chart

High Performance Lithium Sulfur Battery with Novel Separator Membrane for Space Applications, Phase I (https://techport.nasa.gov/imag e/126264)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Bettergy Corporation

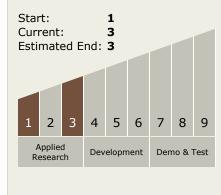
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Lin-feng Li

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

High Performance Lithium Sulfur Battery with Novel Separator Membrane for Space Applications, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

